Dynamical system for a nonautonomous differential equation with α-Lipschitz operator
نویسندگان
چکیده
منابع مشابه
Airy equation with memory involvement via Liouville differential operator
In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...
متن کاملA differential operator and weak topology for Lipschitz maps
We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak* compact and convex valued maps equipped with the Scott topology, is continuo...
متن کاملDifferential operator and weak topology for Lipschitz maps
We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak* compact and convex valued maps equipped with the Scott topology, is continuo...
متن کاملQualitative Analysis of a Nonautonomous Nonlinear Delay Differential Equation
This paper is devoted to the systematic study of some qualitative properties of solutions of a nonautonomous nonlinear delay equation, which can be utilized to model single population growths. Various results on the boundedness and oscillatory behavior of solutions are presented. A detailed analysis of the global existence of periodic solutions for the corresponding autonomous nonlinear delay e...
متن کاملLipschitz Semigroup for an Integro–differential Equation for Slow Erosion
In this paper we study an integro-differential equation describing granular flow dynamics with slow erosion. This nonlinear partial differential equation is a conservation law where the flux contains an integral term. Through a generalized wave front tracking algorithm, approximate solutions are constructed and shown to converge strongly to a Lipschitz semigroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1979
ISSN: 0022-0396
DOI: 10.1016/0022-0396(79)90007-x